Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(34): 22782-22793, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37584079

RESUMEN

With the continuous miniaturization and integration of spintronic devices, the two-dimensional (2D) ferromagnet coupling of ferromagnetic and diverse electrical properties has become increasingly important. Herein, we report three ferromagnetic monolayers: GdS2, GdSe2 and Janus GdSSe. They are bipolar magnetic semiconductors and demonstrate ferroelasticity with a large reversible strain of 73.2%. Three monolayers all hold large magnetic moments of about 8µB f.u.-1 and large spin-flip energy gaps in both the conduction and valence bands, which are highly desirable for applications in bipolar field effect spin filters and spin valves. Our calculations have testified to the feasibility of the experimental achievement of the three monolayers and their stability. Additionally, intrinsic valley polarization occurs in the three monolayers owing to the cooperative interplay between spin-orbit coupling and magnetic exchange interaction. Moreover, we identified square lattices for GdS2 and GdSe2 monolayers. The new and stable square lattices of GdS2 and GdSe2 monolayers show robust ferromagnetism with high Curie temperatures of 648 and 312 K, respectively, and the characteristics of spin-gapless semiconductors. Overall, these findings render GdS2, GdSe2 and Janus GdSSe monolayers promising candidate materials for multifunctional spintronic devices at the nanoscale.

2.
PeerJ ; 11: e15440, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334133

RESUMEN

Objective: Indigofera bungeana is a shrub with high quality protein that has been widely utilized for forage grass in the semi-arid regions of China. This study aimed to enrich the currently available knowledge and clarify the detailed drought stress regulatory mechanisms in I. bungeana, and provide a theoretical foundation for the cultivation and resistance breeding of forage crops. Methods: This study evaluates the response mechanism to drought stress by exploiting multiple parameters and transcriptomic analyses of a 1-year-old seedlings of I. bungeana in a pot experiment. Results: Drought stress significantly caused physiological changes in I. bungeana. The antioxidant enzyme activities and osmoregulation substance content of I. bungeana showed an increase under drought. Moreover, 3,978 and 6,923 differentially expressed genes were approved by transcriptome in leaves and roots. The transcription factors, hormone signal transduction, carbohydrate metabolism of regulatory network were observed to have increased. In both tissues, genes related to plant hormone signaling transduction pathway might play a more pivotal role in drought tolerance. Transcription factors families like basic helix-loop-helix (bHLH), vian myeloblastosis viral oncogene homolog (MYB), basic leucine zipper (bZIP) and the metabolic pathway related-genes like serine/threonine-phosphatase 2C (PP2C), SNF1-related protein kinase 2 (SnRK2), indole-3-acetic acid (IAA), auxin (AUX28), small auxin up-regulated rna (SAUR), sucrose synthase (SUS), sucrosecarriers (SUC) were highlighted for future research about drought stress resistance in Indigofera bungeana. Conclusion: Our study posited I. bungeana mainly participate in various physiological and metabolic activities to response severe drought stress, by regulating the expression of the related genes in hormone signal transduction. These findings, which may be valuable for drought resistance breeding, and to clarify the drought stress regulatory mechanisms of I. bungeana and other plants.


Asunto(s)
Fabaceae , Indigofera , Humanos , Lactante , Fabaceae/metabolismo , Indigofera/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Ácidos Indolacéticos , Factores de Transcripción/metabolismo , Hormonas
3.
ACS Omega ; 7(40): 35727-35734, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36249377

RESUMEN

In this work, a facile casting method was utilized to prepare "polymer-in-ceramic" microporous membranes for thermally safe battery separator applications; that is, a series of composite membranes composed of silicon dioxide (SiO2) as a matrix and polyvinylidene fluoride (PVDF) as a binder were prepared. The effects of different SiO2 contents on various physical properties of membranes such as the porosity, electrolyte absorption rate, electrochemical stability, and especially thermal stability of the SiO2/PVDF composite membranes were systematically studied. Compared with a commercial polypropylene separator, the SiO2/PVDF membrane has a higher porosity (66.0%), electrolyte absorption (239%), and ion conductivity (1.0 mS·cm-1) and superior thermal stability (only 2.1% shrinkage at 200 °C for 2 h) and flame retardancy. When the content of SiO2 in the membrane reached 60% (i.e., PS6), LiFePO4/PS6/Li half-cells exhibited excellent cycle stability (138.2 mA h·g-1 discharging capacity after 100 cycles at 1C) and Coulombic efficiency (99.1%). The above advantages coupled with the potential for rapid and large-scale production reveal that the "polymer-in-ceramic" SiO2/PVDF membrane has prospective separator applications in secondary lithium-ion batteries.

4.
J Int Med Res ; 50(7): 3000605221112043, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35899621

RESUMEN

OBJECTIVE: Femoral neck fractures are common. We evaluated the biomechanical performance of an internal fixation method based on traditional three cannulated screws (3CS) inserted from below the fracture in the direction of the calcar femorale in the treatment of Pauwels III femoral neck fracture. METHODS: We constructed and evaluated a three-dimensional model of a Pauwels III femoral neck fracture with four models of internal fixation (3CS, and 150°, 155°, and 160° nailing angles) for reconstruction of the calcar femorale, by finite element analysis (FEA). RESULTS: The peak stress values at the fracture ends in the 3CS, 150°, 155°, and 160° nailing angle models were 30.052 MPa, 33.382 MPa, 34.012 MPa, and 29.858 MPa; peak stress values for internal fixed stress were 315.121 MPa, 228.819 MPa, 198.173 MPa, and 208.798 MPa; and the maximum displacement of the femoral head was 13.190 mm, 13.183 mm, 12.443 mm, and 12.896 mm, respectively. CONCLUSION: FEA showed that the new nailing methods and the 160° nailing angle for reconstruction of the calcar femorale showed better performance in resisting shearing force for Pauwels III femoral neck fracture, with better mechanical properties, than those with the other three models. These findings can provide a clinical reference.


Asunto(s)
Fracturas del Cuello Femoral , Fenómenos Biomecánicos , Tornillos Óseos , Fracturas del Cuello Femoral/cirugía , Análisis de Elementos Finitos , Fijación Interna de Fracturas/métodos , Humanos , Fenómenos Mecánicos
5.
Nanotechnology ; 33(35)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35617930

RESUMEN

The utilization of carbon framework to guide the growth of the Li dendrites is an important theme for Li metal batteries. The conductivity and electronegative sites of carbon materials will greatly affect the nucleation of Li metal. However, how much these two contributing factors affect the Li plating/stripping stability should be considered. This work presents N, O doped carbon nanofiber framework (CNF) membrane as the interlayer for protecting the Li anode. The amounts of N and O elements and their ratios, the conductivity, the thickness of CNF membrane and their effects on the Li plating/stripping process have been fully analyzed. The voltage profile and the stability of Li plating/stripping process are evaluated by symmetric and asymmetrical coin cells. The lithiophilic heteroatom doped surface mainly works as an excellent guide during the Li plating process, whereas the conductivity and mechanical stability of CNF equalize the current density and confine the volume change in during cycling. With the optimized CNF membrane as the interlayer, both Li metal and Li-S full cells exhibit good capacity properties and cyclic stability.

6.
Cell Death Dis ; 12(11): 1036, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34718330

RESUMEN

Previous studies demonstrated that cGAS pathway is related to the inflammation amplification in a variety of autoimmune diseases. Lysine acetyltransferase family (KATs) can regulate the nuclear transcription or cytoplasmic activation of cGAS through different mechanisms. However, its role and related immunity patterns in systemic lupus erythematosus (SLE) have not been explored. In this study, RNA-seq and scRNA-seq profiling were performed for peripheral blood mononuclear cells (PBMCs) from patients with SLE. R packages were used for bioinformatic analysis. Cell culture, RT-PCR, western blotting, immunofluorescence, immunohistochemistry, and ELISA were used to explore gene expression in vitro or clinical specimens. Plasmid transfection and mass spectrometry were used to detect protein modifications. Eight acetyltransferase and deacetylase family members with significantly differential expression in SLE were found. Among them, KAT2A was abnormally upregulated and positively correlated with disease activity index. Further, KAT2A-cGAS pathway was aberrantly expressed in specific immune cell subsets in SLE. In vitro studies showed KAT2A modulated cGAS through increasing expression and post-translational modification. Our research provides novel insights for accurately positioning specific immune-cell subgroups in which KAT2A-cGAS reaction mainly works and KAT2A regulation patterns.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Inmunidad , Inflamación/inmunología , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Nucleotidiltransferasas/metabolismo , Adulto , Células Dendríticas/metabolismo , Células HEK293 , Humanos , Inflamación/patología , Subgrupos Linfocitarios/inmunología , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Transducción de Señal , Células THP-1 , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...